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Diffusion Models

 Derivation of Diffusion Models + Stable Diffusion/Control net (Last Lecture)
* Markov Hierarchical Variational Auto Encoders (MHVAE)
e Diffusion Models are VAEs with Linear Gaussian Autoregressive latent space

ELBO for Diffusion Models is a particular case of ELBO for VAEs with extra structure

* Implementation Details

Latent Diffusion Models (Stable Diffusion) + Controllable generation

* Image Editing with Diffusion Models (Today’s Lecture)
 DDIM, P2P, Overview of other baselines from project



Latent Space Image Editing: Inversion + Manipulation

Fake Image

Sampling &
Latent space Generation

x =G(z), z~N(0, 1)

(a) invert real image into latent space
z*= arg min (G(z), x)
V4
(b) manipulate the inverted image in
the latent space

x = G(z*+n,) x = G(z*+n,)

Reconstruction& Manipulation

Decrease ge Add smile

We learned that diffusion models are hierarchical VAEs so can we use their “latent space” to do editing?



Text-to-Image Diffusion Models

* Last class, we learned that stable diffusion can perform conditional generation

using a text prompt
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Text prompt: “photograph of a puppy on the grass”



Naive Image Editing Idea

* Instead of starting from pure noise, let us perform naive inversion using the
forward process and a fixed image
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Reverse process with conditioning: “photograph of a cat on the grass”
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Depending on how much noise we add, we can change a lot of features in the image or not enough features



Better Inversion?

* Problem: There is a lot of randomness in the diffusion model

 What if we had a different sampling mechanism?

* In the next couple slides, we will derive a different sampling mechanism for pixel-space
diffusion models (DDIM) that will allow us to achieve better inversion as a result



Denoising Diffusion Implicit Models (DDIM)

e Recall our ELBO derivation
logp (x)

= Eq¢(x1|x0)[logpe (xo | x1)] = Dk (qu(xT | X0)|pe(XT)) - Z Eq¢(xt|x0) [DKL (Q¢(xt—1 | x¢,%0) || Po(xp—1 | x¢ ))]
' t=2 .

reconstruction term

* Previously: Compute g4 (x;_1|x¢, Xo) by Bayes rule + forward process q(x;|xy) =
N(\/ a_txOr (1 o a_t)l)

e New idea: Define inference distribution as
Qo (Xt_1 |X¢, X0) = N(\/ O—1Xg + \/1 — g1 —

* Marginal q(x;|x,) gives same forward process as DDPM
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* Note that when g; = 0 for all t, the process is deterministic!
* Hint: Inversion will be easier!



Learning Objective

* Recall KL divergence for Gaussians
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* Choose variance of p to match exactly variance of ¢ 62(t) = of
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This is going to be same as DDPM!

* Choose mean of pto match form ean of g
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What have we done?

* We created a new inference distribution such that the training objective is same
as DDPM

* This should make sense because the marginal g(x;|xy) was same as DDPM forward process
and that is all the training objective depended on

* But we introduced this parameter o; !
* One application: Much faster sampling

— - Xe — /0 Xg (x¢, £)
Xe—q = +/O0;_1Xxg(xs, t) + Jl — 01 — atz — +
1/ 1 - O(t

Predicted x Direction pointing to x; Random noise

@ — @ @ — @

Q(€U3\332,330) Q(fﬂz\iﬂlafﬂo)

O €




DDIM Inversion

* Finally, we can come back to what we started off with: image editing for which
we wanted “inversion” of diffusion model

* DDIM with g; = 0 gives us deterministic sampling (i.e. given x;, DDIM sampling
is fixed)

* This is useful for inversion

* Take xy and compute the forward process using g, = 0 and some sample of x7. This
computed x; is the "inversion” of x, into the latent space of the diffusion model

* Next, we will see how to perform edits in this space
* One example: Prompt2Prompt (P2P)



Prompt2Prompt
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 Attention Control: DDIM Inversion has no symbolic (rigid) control for
structural consistency! Authors proposed to save the cross-attention maps
during DDIM Forward and re-use (inject) them during reverse process.
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Project Overview

* Some baseline methods in your project improve upon inversion or editing

 DDIM Inversion, better editing: Direct Inversion, Null Text Inversion, Pix2Pix Zero
* DDPM Inversion: Edit-Friendly P2P
* Naive Inversion, latent space editing: Blended Latent Diffusion, MasaCtrl

* Other methods just train conditional diffusion models on large datasets to
perform editing

* Instruct Pix2Pix, InstructDiffusion, StyleDiffusion



